خيارات التسجيل

 Geometrical Optics

This module introduces the fundamental principles of optics through the ray model. We analyze light propagation in transparent media, image formation across interfaces, and the design of complex optical instruments.

01
Fundamental Laws

Rectilinear propagation, Snell-Descartes laws, and Fermat’s principle of least time.

\( n_1 \sin(i_1) = n_2 \sin(i_2) \)
Huygens Construction Refractive Index
02
Mirrors

Image construction and position formulas for plane and spherical reflective surfaces.

\( \frac{1}{v} + \frac{1}{u} = \frac{1}{f} \)
[Image of concave and convex mirror ray diagrams]
Catoptrics Virtual Images
03
Diopters

Refraction at plane and spherical interfaces. Mastery of conjugation and magnification.

\( \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R} \)
Stigmatism Gauss Conditions
04
Prisms

Study of light deviation and chromatic dispersion formulas through triangular media.

\( \delta = i + i' - A \)
[Image of light dispersion through a prism]
Spectroscopy Minimum Deviation
05
Thin Lenses

Position formulas and geometric ray construction for centered optical systems.

\( \frac{1}{f'} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2}) \)
Convergence Image Nature
06
Optical Instruments

Application to the human eye, magnifying glasses, microscopes, and telescopes.

\( G = \frac{\alpha'}{\alpha} \)
Accommodation Angular Magnification
Phys 302: Geometrical Optics Module Moodle Course Pack v2025
الانضمام الذاتي (طالب)